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Signal-transducing guanine nucleotide-binding proteins (G proteins) couple extracellular
receptor proteins to intracellular effector enzymes and ion channels, and therefore are crit-
ical mediators of cellular responses to external stimuli. G proteins are comprised of three
subunits (

 

a

 

, 

 

b

 

, 

 

g

 

), each encoded by many different genes. The multiplicity of G protein
subunits facilitates great combinatorial variability, which, in part, accounts for the ability
of G proteins to interact with many different receptor and effector proteins. Hundreds of G
protein-coupled receptors have been identified, and their unique patterns of expression
among a restricted number of cell types contributes greatly to the apparent specificity of
hormone action. Mutations that either activate or inactivate some of these receptors ac-
count for a number of highly specific syndromes, which affect a limited number of target
tissues. By contrast, most G proteins are widely expressed in many tissues. Accordingly,
mutations in these signaling molecules would be expected to produce a more generalized
pattern of hormone dysfunction. Activating mutations in the gene (GNAS1) that encode
the 

 

a

 

 subunit of the G protein that stimulates adenylyl cyclase (AC) have been identified
in many endocrine neoplasms and diverse tissues of patients with McCune-Albright syn-
drome. The McCune-Albright syndrome is characterized by autonomous endocrine func-
tion, hyperpigmented skin lesions, and fibrous dysplasia of bone—effects which reflect
the ability of CAMP to stimulate cell function and proliferation in a wide variety of tis-
sues. The unusual features of the McCune-Albright syndrome are explained by the mosaic
distribution of cells bearing the mutant allele, an observation that is most consistent with
postzygotic mutation of GNAS1. Experimental analysis of this syndrome has extended
our understanding of the clinical and biochemical consequences of dysfunctional G pro-
tein action and has provided a bench-to-bedside demonstration of the critical role that G
proteins play in transmembrane signal transduction in humans. © 2000 IMSS. Published
by Elsevier Science Inc.
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Introduction

 

Signal-transducing guanine nucleotide-binding proteins
(G proteins) couple extracellular receptor proteins to
intracellular effector enzymes and ion channels, and there-
fore are critical mediators of cellular responses to external
stimuli. G proteins are heterotrimers comprised of three
subunits (

 

a

 

, 

 

b

 

, and 

 

g

 

), each encoded by a family of different
genes. Different combinations of these G protein subunits al-

low for great diversity in the composition of the heterotrimers.
This, in part, accounts for the ability of G proteins to interact
specifically with different receptor and effector proteins. The
G protein-coupled receptors have a common serpentine struc-
ture, which consists of seven membrane-spanning alpha heli-
ces and detects extracellular signals as diverse as light photons,
odorants, hormones, growth factors, and neurotransmitters
(1). G proteins regulate activity of many second messenger
systems, including enzymes such as adenylyl cyclase (AC),
phospholipase C, and phospholipase A

 

2

 

, and ion channels.
The critical role that G proteins play in regulating cellu-

lar responses to extracellular signals implies that altered G
protein expression or activity can have significant biologi-
cal consequences (2). Germline and somatic mutations of
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the human GNAS1 gene located at 20q13.11 (3,4), which
encodes the 

 

a

 

 subunit of the G protein (G

 

s

 

) that stimulates
adenylyl cyclase (AC), have been identified as the basis for
several clinical disorders. Characterization of many of these
naturally occurring mutations has provided substantial in-
sight into functional domains of G

 

a

 

s

 

, and in many instances
has complemented or confirmed analyses of mutant 

 

a

 

chains developed in the research laboratory (5). For exam-
ple, early laboratory studies indicated that replacement of
either arginine

 

201

 

 or glutamine

 

227

 

 of G

 

a

 

s

 

 inhibits the intrin-
sic GTPase activity, resulting in constitutive activation of
AC and increased production of cAMP (6,8). Subsequent
human genetic analyses revealed that somatic mutations in
the GNAS1 gene that replaced these two key amino acids
were present in a subset of 

 

GH

 

 (GH)-secreting pituitary and
thyroid adenomas (9,10). Similar mutations have also been
found in patients with the McCune-Albright syndrome
(MAS), a sporadic disorder characterized by increased hor-
mone production and/or cellular proliferation of many tis-
sues (11,12). By contrast, heterozygous germline mutations
of the GNAS1 gene that decrease expression or function of
G

 

a

 

s

 

 are present in subjects with Albright hereditary osteo-
dystrophy (AHO), an autosomal dominant disorder associ-
ated with a constellation of developmental defects including
obesity, short stature, brachydactyly, and subcutaneous os-
sification (13). Most patients with AHO also show reduced
responsiveness to multiple hormones (14–18), a condition
termed pseudohypoparathyroidism (PHP) type 1a. These
hormones, which include parathyroid hormone (PTH), thy-
roid stimulating hormone (TSH), and glucagon, bind to re-
ceptors that require G

 

a

 

s

 

 to trigger activation of AC. By con-
trast, other patients with AHO appear to have normal
hormonal responsiveness in spite of identical loss-of-func-
tion GNAS1 mutations, a condition termed pseudopseudo-
hypoparathyroidism (13).

MAS and AHO represent contrasting gain-of-function
and loss-of-function mutations in the same gene. Experi-
mental analysis of these two syndromes has extended our
understanding of the clinical consequences of dysfunctional
G protein action, and has provided unexpected insights into
the importance of cAMP as a regulator of the growth and/or
function of many tissues. This review will focus on the biol-
ogy of activating mutations of GNAS1, from bench to bed-
side, as a paradigm for many of the clinical implications of
altered G protein function.

 

G Protein Structure and Function

 

G proteins share a common heterotrimeric structure consisting
of an 

 

a

 

 subunit and a tightly coupled 

 

bg

 

 dimer. The 

 

a

 

 subunit
interacts with detector and effector molecules, binds GTP, and
possesses intrinsic GTPase activity (19). Mammals have over
20 different G protein 

 

a

 

 chains encoded by 16 genes; addi-
tional protein diversity results from the generation of alterna-

tively spliced mRNAs. The various G protein 

 

a

 

 chains can be
grouped into four major classes (G

 

s

 

, G

 

i

 

, G

 

q

 

, and G

 

12

 

) accord-
ing to structural and functional homologies. The GTP-
liganded 

 

a

 

 chain is the primary regulator of membrane-bound
ion channels and enzymes that generate intracellular second
messengers. The 

 

a

 

 subunits associate with a smaller group of

 

b

 

 (

 

$

 

5) and 

 

g

 

 (

 

.

 

12) subunits (20). The 

 

b

 

 and 

 

g

 

 subunits com-
bine preferentially with one another (21,22) and the resultant

 

bg

 

 dimers demonstrate specific associations with different 

 

a

 

subunits (23,24). Combinatorial specificity in the associations
among various G protein subunits provides the potential for
enormous diversity, and may allow distinct heterotrimers to
interact selectively with only a limited number of the more
than 1,000 G protein-coupled receptors (25,26). At present, it
is unknown whether specific G protein subunit associations
occur randomly or whether there are regulated mechanisms
that determine the subunit composition of heterotrimers.

The binding and hydrolysis of GTP regulate the activity
of G proteins (Figure 1). In the basal (nonstimulated) state,
G proteins exist in the heterotrimeric form, with GDP
tightly bound to the 

 

a

 

 chain. Upon receptor activation, a
conformational change occurs in the 

 

a

 

 chain, which facili-
tates the exchange of bound GDP for GTP, with subsequent
dissociation of the 

 

a

 

-GTP chain from the 

 

bg

 

 dimer and the
receptor. The free 

 

a

 

-GTP chain is able to interact with ef-
fector enzymes and ion channels to regulate their activity. In
addition, free 

 

bg

 

 dimers can also participate in downstream
signaling events (27,28). For example, 

 

bg

 

 dimers can influ-
ence activity of certain forms of AC and phospholipase C,
open potassium channels (29), participate in receptor desen-
sitization (30,31), mediate mitogen-activated protein (MAP)
kinase phosphorylation (32,33), and modulate leukocyte
chemotaxis (34). The interaction of 

 

a

 

-GTP with the effector
molecule is terminated by the hydrolysis of GTP to GDP by
an endogenous GTPase. The GTPase reaction is a high-
energy transition state that requires association of the 

 

g

 

-phos-
phorous atom with the oxygen of a water molecule. To catalyze
this reaction, the 

 

g

 

-phosphate of GTP must be stabilized so that
a straight line, perpendicular to the plane of the 

 

g

 

-phosphate,
connects the water, 

 

g

 

-phosphorous, and oxygen molecule,
leaving the 

 

b

 

-phosphate. The precise arrangement of these at-
oms is maintained through interaction with key amino-acid
residues, which have been identified through x-ray crystallog-
raphy and 

 

in vitro

 

 mutagenesis experiments (35–46). These
studies indicate that arginine

 

201

 

 and glutamine

 

227

 

 in G

 

a

 

s

 

 func-
tion as fingers to stabilize the 

 

g

 

-phosphate of GTP. With hy-
drolysis of GTP to GDP, the 

 

a

 

-GDP chain reassociates with
the 

 

bg

 

 dimer and the heterotrimeric G protein is ready for an-
other cycle of receptor activation.

The intrinsic GTPase of each G

 

a

 

 chain provides a mo-
lecular switch that controls the intensity of the signaling
event. Accordingly, structural alterations of G

 

a

 

 chains that
slow GTP hydrolysis will delay termination of the signal
transduction process and cause persistent and excessive sig-
naling.
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G Protein Regulation of AC

 

Many hormones and growth factors regulate cell growth
and proliferation through their ability to bind and activate
receptors that are coupled by G proteins to various isoforms
of AC (47). In many cell types, intracellular cAMP is not
only a potent mitogenic signal but is also an important stim-
ulus for hormone production and/or secretion. Activity of
AC is under dual regulatory control through receptors that
interact with either G

 

s

 

 to stimulate AC or with G

 

i

 

 to inhibit
AC (48). Additional complexity in the control of AC activ-
ity derives from the observation that several forms of AC
are also regulated by protein kinase C–signaling pathways
through the intercession of still other G proteins (49,50).
Thus, AC acts as a coincidence detector, and its activity is
determined by a complex and coordinate interplay between
multiple G protein subunits and other regulators (e.g., cal-
cium-calmodulin) (25,51).

 

Activating Mutations of the GNAS1 Gene

 

The critical role that cAMP plays in stimulating the growth
and proliferation of many cell types makes mutations in this

signaling pathway likely candidates as the basis for several
endocrine diseases (52). Indeed, a growing number of inher-
ited and sporadic endocrine disorders has now been attrib-
uted to either germline or somatic mutations in G

 

a

 

s

 

 or to its
receptors, which produce constitutive (i.e., hormone-inde-
pendent) activation of AC (2,53). Vallar et al. (54) initially
described a subset of human GH-secreting pituitary tumors
that exhibited increased AC activity 

 

in vitro

 

 in the absence
of added GH-releasing hormone. The molecular basis for
constitutive activation of AC in these somatotropic tumors
was subsequently identified as an oncogenic form of G

 

a

 

s

 

termed 

 

gsp

 

, which lacked GTPase activity due to the re-
placement of either arginine

 

201

 

 or glutamine

 

227

 

(9,10). These
mutations enable the G

 

a

 

s

 

 subunit to remain in the active
GTP-bound state, and thereby cause persistent and exces-
sive synthesis of cAMP in affected cells. Such activating
mutations occur in approximately 40% of somatotropic tu-
mors (Table 1) and may distinguish a subset of tumors more
sensitive to inhibition of 

 

GH

 

 secretion by somatostatin ana-
logs (55,56). In addition to 

 

GH

 

-secreting pituitary tumors,

 

gsp

 

 mutations are also present in a small number of AC thy-
roid hormone (TH)-secreting pituitary tumors (55,57), a
subset of thyroid neoplasms, and testicular and ovarian stro-

Figure 1. The G protein GTPase regulatory cycle. In the nonstimulated, basal (Off) state, GDP is tightly bound to the a chain of the heterotrimeric G protein.
Binding of an agonist (Ligand) to its receptor (depicted with seven transmembrane spanning domains) induces a conformational change in the receptor, and
enables it to activate the G protein. The G protein now releases GDP and binds GTP present in the cytosol. Binding of GTP to the a chain leads to dissociation
of the a-GTP from the bg dimer, and each of these molecules is now free to regulate downstream effector proteins. Hydrolysis of GTP to GDP by intrinsic
GTPase of the a chain promotes reassociation of a-GDP with bg and the inactive state is restored. The heterotrimeric G protein is ready for another cycle of
hormone-induced activation.
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mal Leydig tumors (58), but are rare in other endocrine
tumors (Table 1). Moreover, 

 

gsp

 

 mutations have been de-
scribed in ovarian cysts that cause isosexual gonadotropin-
independent precocious puberty (59,60) and in isolated fi-
brous dysplasia of the bone (61).

The amino acids arginine

 

201

 

 and glutamine

 

227

 

 are located
in domains of G

 

a

 

s

 

, which are required for GDP/GTP bind-
ing and intrinsic GTPase activation (62–66). Modification
of these key amino acids can have profound consequences.
For example, the exotoxin secreted by 

 

Vibrio cholerae

 

 cata-
lyzes the addition of an ADP-ribose moiety to the side chain
of arginine

 

201

 

 in G

 

a

 

s

 

. This covalent modification markedly
reduces GTP hydrolysis, maintaining G

 

a

 

s

 

 in its active GTP-
bound form, and causing ligand-independent stimulation of
AC (67). The subsequent accumulation of cAMP in intesti-
nal epithelial cells stimulates secretion of salt and water into
the intestine and produces, in part, the watery diarrhea asso-
ciated with cholera.

Amino acid glutamine

 

227

 

 corresponds to the cognate
amino acid, Gln

 

61

 

, in the low molecular weight (LMW)
GTP-binding protein p21

 

ras

 

. Replacement of this amino acid
inhibits the protein’s intrinsic GTPase, leading to constitu-
tive activation of signaling pathways transforming 

 

in vitro

 

(68,70). Naturally occurring Gln

 

61

 

 mutations convert p21

 

ras

 

into an oncogene present in a variety of human tumors (71).

 

Molecular Basis for the McCune-Albright Syndrome

 

First described in 1937, the McCune-Albright syndrome
(MAS) (27,73) is a sporadic syndrome characterized by the
clinical triad of polyostotic fibrous dysplasia, café-au-lait
skin lesions, and endocrine hyperfunction. The unusual distribu-
tion of skin and bone lesions in MAS and the development of
excessive endocrine function in the absence of stimulatory or
tropic hormones is explained by the presence of 

 

gsp

 

 mutations

in affected tissues of patients with this syndrome (11,12).
GNAS1 mutations that lead to the replacement of arginine

 

201

 

[e.g., Arg

 

201

 

(CGT)

 

→

 

His(CAT) or Cys(TGT)] have been iden-
tified in DNA isolated from tissues of patients with MAS
(11,12,74–77); surprisingly, similar mutations that replace the
nearby glutamine at position 227 have not been described.

The 

 

gsp

 

 mutation is not present in all tissues of patients
with MAS. Cells containing a GNAS1 gene mutation are
distributed in a mosaic pattern, the greatest number of 

 

gsp

 

-
containing cells present in the most abnormal areas of af-
fected tissues (Figure 2) (11,12,75,78,79). These molecular
observations confirmed the hypothesis, initially proposed
on the basis of clinical observations, that the variable in-
volvement of endocrine organs and eccentric distribution of
skeletal and skin lesions represents mosaicism, which is de-
rived from a postzygotic somatic mutation (80). Similarly,
the lack of documented heritability of MAS has been inter-
preted as evidence that germline transmission of the muta-
tion would be lethal (80).

The variable involvement of different tissues in patients
with MAS likely reflects several biological effects. First,
the 

 

gsp

 

 mutation arises early in embryogenesis and there-
fore affects cells that are then distributed in a mosaic pat-
tern. The proportion and distribution of affected cells in a
tissue will be determined by the precise stage of develop-
ment at which the mutation occurred. Thus, mutational
events that occur later in embryogenesis are likely to give
rise to fewer mutant cells and a milder phenotype than mu-
tational events that occur very early. As a corollary, acquisi-
tion of a 

 

gsp

 

 mutation months or even years after birth could
explain the development of a solitary endocrine tumor or a
single fibrous dysplasia lesion in some patients. A second
determinant of clinical phenotype is based on the variable
ability of cAMP to induce proliferation in different cells.
Thus, mutational activation of G

 

a

 

s

 

 will have the most signifi-
cant consequences in tissues, in which cAMP stimulates cellular
proliferation and/or hormone secretion. Cyclic AMP is not mi-
togenic in all cell types and, in some, cAMP can actually inhibit
growth. Even in cells where cAMP is a strong growth stimula-
tor, changes in the expression of other genes (56) or induction of
counter-regulatory responses (such as increased cAMP phos-
phodiesterase activity 881–85) could mitigate or even reverse
the effects of the activated G

 

a

 

s

 

 phenotype. Finally, the impact
of the 

 

gsp

 

 mutation may be further diminished on the basis of
the reduced half-life of activated Gas molecules (86–88).

It is unknown whether endocrine, skin, and skeletal le-
sions in MAS patients represent the proliferation of mosaic
rests of cells harboring the gsp mutation, or whether they re-
sult from the acquisition of additional gene mutations.
Based on the variable impact of gsp mutation in different
tissues, a second genetic hit may be required for prolifera-
tion or excess hormone secretion in some tissues (89–91).
However, in other cells, such as melanocytes (92–94) or so-
matotropes (85,95), persistently elevated levels of cAMP
may be sufficient to alter cellular phenotype.

Table 1. Clinical syndromes associated with activating mutations
of GNAS1*

McCune-Albright Syndrome (100%)

Pituitary adenomas (4–50%)
Growth hormone-secreting adenomas (35–40%)
ACTH-secreting adenomas (4–9%)
Clinically non-functioning adenomas (rare)

Thyroid neoplasms (3–70%)
Hyperfunctioning and nonfunctioning follicular adenomas

Papillary and follicular carcinomas
Parathyroid neoplasms (,5%)

Parathyroid adenomas
Adrenocortical disorders (,5%)

Aldosterone-producing adenomas
Adrenal hyperplasia
Pheochromocytoma

Leydig cell and ovarian neoplasms (66%)

ACTH 5 adrenocorticotropin.
*For further information please refer to Reference 99.
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Not surprisingly, cells bearing the gsp mutation are also
present in tissues not usually affected in MAS (Figure 2), in-
cluding peripheral blood leukocytes, liver, heart, thymus, and
the gastrointestinal tract (11,12,96). In some tissues, such as
the parathyroids, gsp mutation may have little effect, because
chronically elevated levels of intracellular cAMP seem to
play a limited role in parathyroid cell proliferation or hor-
mone secretion (97). On the other hand, the presence of gsp
mutation in other tissues has, in some patients, been associ-
ated with clinical consequences such as hepatitis, cardiac ar-
rhythmias, or intestinal polyps. Recently, a more severe form
of MAS was described, in which patients manifest jaundice,
hepatitis, extramedullary hematopoiesis, gastrointestinal pol-
yps, thymic hyperplasia, acute pancreatitis, neurodevelop-
mental disorders, and even sudden cardiac death (96,98). This
severe phenotype may result from a very early somatic muta-
tion, resulting in the distribution of large numbers of affected
cells throughout the body. Remarkably, this phenotype dem-
onstrates the wide variety of cell types that can be influenced
by Gs-coupled signaling pathways, and in which excessive
cAMP can produce profound consequences.

Clinical Manifestations of McCune-Albright Syndrome

We previously reviewed the literature in English by Medline
search (1966–1996) and cross-referencing (1926–1996), and

identified 158 reported cases of MAS (99). Clinical data are
summarized below and in Table 2. The reader is referred to Ref-
erence 99 for a more comprehensive discussion of the findings.

Polyostotic fibrous dysplasia (PFD). Solitary or multiple
expansile fibrous dysplasia lesions are present in nearly all
(98%) patients with MAS. These lesions typically develop
during the first decade of life (Table 2) and can cause pro-
gressive deformity, fractures, and nerve entrapment. The fe-
mur and pelvis are most commonly involved. Radiographs
of affected bones reveal expansile, lytic lesions with a
ground-glass pattern, and a scalloped border secondary to
endosteal erosion. Bone histology discloses three primary
but distinct histological patterns: (1) Chinese writing type,
(2) sclerotic/pagetoid type, and (3) sclerotic/hypercellular
type, characteristically associated with the axial/appendicu-
lar skeleton, cranial bones, or gnathic bones, respectively
(100). These lesions bear only faint resemblance to those
found in hyperparathyroidism (osteitis fibrosa cystica) and,
with rare exceptions (101,102), PTH levels are typically
normal in patients with MAS. Solitary lesions (mono-osto-
tic fibrous dysplasia) are present in a minority of patients
with MAS.

The basis for the unusual cellular changes in fibrous dys-
plasia is poorly understood. Recent evidence indicates that
the fibrotic areas consist, in fact, of an excess of cells with

Figure 2. Analysis of PCR-amplified fragments spanning exon 8 of the GNAS1 gene. Genomic DNA was isolated from peripheral blood leukocytes from a
Normal subject (first lane) and from a patient with MAS, including peripheral blood leukocytes (Blood) and four distinct regions of the liver (Liver 1–4)
obtained at the time of liver transplant. This patient had hepatitis and cirrhosis, and each region of the liver showed a different degree of destruction. The
upper panel shows analysis after denaturing gradient gel electrophoresis. Normal DNA shows only a single homoduplex band corresponding to wild-type
sequence for exon 8, whereas all DNA samples from the patient showed an additional, more slowly migrating band that corresponded to sequence of exon 8 in
which Arg201 was replaced by Cys (R201C). The lower panels show autoradiograms representing hybridization of the PCR products with radioactive oligonu-
cleotides specific for either the mutant allele (R201C) or the wild-type allele (Normal). The R201 allele is present to varying degrees in all DNA samples
obtained from the patient with MAS. The percentage of mutant alleles (expressed as mutant divided by total) ranged from 10% in the blood to 25% in Liver 1,
with 50% indicating that all cells contain the mutant allele.
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phenotypic features of pre-osteogenic cells, whereas the le-
sional bone formed de novo within fibrotic areas represents
the biosynthetic output of mature but abnormal osteoblasts.
It is likely that at least some of the phenotypic changes in af-
fected osteogenic cells result from cAMP-induced increases
in expression of interleukin-6 and the c-fos proto-oncogene
(76,103–106). The mosaic distribution of lesions in fibrous
dysplasia may also play an important pathogenic role, as
close contact between transplanted normal bone cells and
osteogenic cells containing the gsp mutation is necessary to
reproduce the fibrous dysplasia lesion in mice (107).

PFD also occurs in patients who lack other features of
MAS, and similar gsp mutations have been identified in
these isolated lesions (76,108).

Although no treatment appears entirely satisfactory, pre-
liminary studies have demonstrated that pamidronate, a
powerful bisphosphonate that can inhibit bone resorption, is
at least partially effective in treating fibrous dysplasia bone
lesions (105,109).

Café-au-lait skin lesions. Patients with MAS typically have
one or more pigmented macules, termed café-au-lait le-
sions, that have irregular borders, termed Coast of Maine.
By contrast, café-au-lait skin lesions that occur in patients
with neurofibromatosis (Von Recklinghausen’s syndrome)
have a smooth border (Coast of California). Distribution of
skin lesions in MAS is also characteristic: lesions rarely ex-
tend beyond the midline, and the majority tend to be on the
same side of the body as the skeletal lesions. They occur
most commonly on the buttocks and lumbo-sacral regions.

Endocrine abnormalities. Endocrine disorders are common
in MAS and are characterized by autonomous and excessive
function of hormone-producing tissues (Table 2). Serum con-
centrations of tropic or stimulating hormones are typically
normal or reduced. The most common endocrine disorder is
gonadal hyperfunction. Precocious pseudopuberty, character-
ized by abnormally elevated sex hormones with low or unde-

tectable serum levels of gonadotropins, has been reported in
over 60% of patients with MAS (99). Precocious puberty is a
common initial manifestation of MAS in girls, and character-
istically presents as thelarche and/or vaginal bleeding in a girl
under 5 years of age. Typically, estrogen levels are elevated
as a result of ovarian cysts, and serum levels of luteinizing
hormone (LH) and follicle-stimulating hormone (FSH) are
low. Sex hormone secretion is typically unassociated with
follicular maturation or ovulation, and patients lack reproduc-
tive ability. Some girls have regular menses and rapid puber-
tal development, whereas others have irregular or intermittent
bleeding associated with relatively normal rates of growth.
Estrogen production appears related to the growth and invo-
lution of small ovarian cysts, and ovarian activity can un-
dergo spontaneous remission in some cases. Large, benign
ovarian cysts may also occur (59,60), and surgical excision
may result in regression of secondary sexual characteristics
until onset of normal pubertal development. Patients typically
have low or suppressed levels of serum LH and FSH, which
fail to increase significantly after administration of gonado-
tropin-releasing hormone (GnRH), a characteristic of gona-
dotropin-independent precocious puberty (i.e., precocious
pseudopuberty). Testing may be normal during intervals of
apparent ovarian inactivity, however. It is interesting that, af-
ter several years of excessive sex steroid exposure, some girls
experience a transition to central precocious puberty, particu-
larly those with bone age of 11 years or older (110,111). As
adults, women with a past history of gonadotropin-indepen-
dent precocious puberty are generally fertile, although they
may have occasional irregular menses due to continued au-
tonomous production of estrogen.

Treatment of girls with MAS and precocious puberty is
problematic. Therapy with GnRH analogs and super-agonists
is not effective unless there has been a progression to central
precocious puberty (111). Treatment with the aromatase in-
hibitor testolactone (110,112), or more recently, with keta-
conazole (113), has been successful for short periods of time,
but long-term therapy has generally been disappointing.

Table 2. Clinical characteristics of patients with the McCune-Albright syndrome

Patients
(n 5 158)

Male
(n 5 53)

Female
(n 5 105)

Age at diagnosis
(years) Comments

Fibrous dysplasia 154 51 103 7.7 (0→52) Polyostotic more common than mono-ostotic
Café-au-lait lesions 135 49 86 7.7 (0→52) Variable size and number of lesions, irregular border (Coast of Maine)
Precocious puberty 82 8 74 4.9 (0.3→9) Common initial manifestation
Acromegaly/Gigantism 42 20 22 14.8 (0.2→42) 17/26 with adenoma on MRI/CT
Hyperprolactinemia 23 9 14 16.0 (0.2→42) 23/42 of acromegalics with ↑  PRL
Hyperthyroidism 30 7 23 14.4 (0.5→37) Euthyroid goiter is common
Hypercortisolism 9 4 5 4.4 (0.2→17) All primary adrenal
Myxomas 8 3 5 34 (17→50) Extremity myxomas
Osteosarcoma 3 1 2 36 (34→37) At sites of fibrous dysplasia, not related to prior radiation therapy
Rickets/Osteomalacia 4 1 3 27.3 (8→52) Responsive to phosphorous plus calcitriol
Cardiac abnormalities 17 8 9 (0.1→66) Arrhythmias and CHF reported
Hepatic abnormalities 16 6 10 1.9 (0.3→4) Neonatal iciterus is most common

CT 5 computer tomography, MRI 5 magnetic resonance imaging, PRL 5 prolactin, CHF 5 congestive heart failure.
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Pituitary-independent precocious puberty also occurs in
boys with MAS, but is much less common than in young
girls. Approximately 10% of reported MAS patients with
precocious puberty are male. Testicular biopsy in these
cases reveals variable degrees of seminiferous tube devel-
opment and Leydig cell hyperplasia. Treatment is similar to
that for familial male precocious puberty, due to activating
mutations of the LH receptor (i.e., testitoxicosis) (114–116) and
consists of the combination of testolactone plus spironalactone.

GH excess and/or hyperprolactinemia are common in pa-
tients with MAS, and many patients have features of ac-
romegaly and galactorrhea. Gigantism in children and ado-
lescents has also been described. The biochemical behavior
of GH-producing pituitary tumors in patients with MAS ap-
pears indistinguishable from that of sporadic tumors with
and without gsp mutations. GH secretion is stimulated by
TRH, GHRH, and sleep and is incompletely suppressed by
glucose administration. However, only 65% of MAS pa-
tients with GH excess have radiographic evidence of a pitu-
itary tumor, a much lower incidence than in sporadic cases
of acromegaly (99%) (99). In addition, hyperprolactinemia
occurs in over 50% of MAS patients with elevated GH lev-
els, a frequency somewhat greater than in patients with spo-
radic pituitary tumors (40%) (99). Medical therapy with so-
matostatin analogs and bromocriptine has been shown to
reduce tumor size and hormonal secretion in many, but not
all, patients (55,56).

Autonomous thyroid nodules and hyperthyroidism have
been reported in approximately 33% of MAS patients who
underwent thyroid evaluation (99,117). Thyroid nodules
have been treated by radioactive iodine ablation or surgery.
The degree of hyperthyroidism is variable, and serum con-
centrations of TSH are typically low. The thyroid gland will
often appear normal on physical examination, but nodules
are nearly always detectable by sonography. Patients lack
clinical or serological evidence of autoimmune thyroid dis-
ease and thyroid-stimulating immunoglobulins are unde-
tectable.

Patients with MAS occasionally develop autonomous
function of the adrenal gland and primary hypercortisolism
at a young age (mean age, 4.4 years) (99). Adrenal gland
histopathology reveals either nodular hyperplasia or solitary
adenoma.

Hypophosphatemic rickets and osteomalacia can develop
in patients with polyostotic fibrous dysplasia, with or with-
out the MAS phenotype. The pathophysiological basis for
hypophosphatemia appears to be decreased renal tubular re-
absorption of phosphorous, but the cause remains unknown.
Two theories have been proposed to explain hyperphospha-
turia in MAS: (1) the production of a circulating phosphatu-
ric factor, termed phosphatonin, by fibrous dysplasia lesions
and (2) an intrinsic defect in renal tubular reabsorption of
phosphate (118). Recent studies suggest that both hypothe-
ses are plausible. Activating mutations of Gas have been
identified in the kidneys of patients with MAS, and could

result in excess generation of cAMP in proximal tubular
cells and consequent reduction in tubular reabsorption of
phosphorous. Indeed, basal levels of nephrogenous cAMP
are elevated in some MAS patients with hypophosphatemia,
in spite of normal serum levels of PTH (118). However,
these observations cannot exclude the possibility that a cir-
culating phosphaturic factor is also present in MAS patients
with hypophosphatemia. Occurrence of hypophosphatemic
osteomalacia in patients with isolated fibrous dysplasia sup-
ports the notion that similar bone lesions in patients with
MAS may elaborate a phosphaturic factor.

Conclusions

Activating and inactivating mutations in the gene encoding
Gas are now known to be the basis for two well-described
contrasting clinical disorders—MAS and AHO. The identi-
fication of somatic mutations in the GNAS1 gene in patients
with MAS has yielded the molecular basis for many fea-
tures of this unusual disorder, and provides important in-
sights into the role of cAMP in controlling cellular prolifer-
ation and hormone secretion in many cell types. Further
investigation will be necessary, however, to determine the
identity and contributions of the other genes that modify the
phenotypic expression of the gsp mutation.
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